UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education – Advanced Subsidiary Level and Advanced Level

CHEMISTRY

Paper 2 Structured Questions AS Core

9701/02

October/November 2004

1 hour 15 minutes

Candidates answer on the Question Paper.
Additional Materials:
Data Booklet

Candidate Name		
Centre Number	Candidate Number	

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number in the spaces provided at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

You may lose marks if you do not show your working or if you do not use appropriate units.

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given on this page.

Stick your personal label here, if provided.

For Exam	iner's Use
1	
2	
3	
4	
5	
TOTAL	

1 Hydrogen iodide dissociates into its elements according to the equation below.

$$2\mathsf{H}\mathsf{I}(\mathsf{g}) \Longleftrightarrow \mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g})$$

(a) Write the expression for the equilibrium constant, K_c .

[1]

(b) At 120 °C the equilibrium mixture contains 1.47 mol dm $^{-3}$ of HI(g), 0.274 mol dm $^{-3}$ each of H₂(g) and I₂(g).

Calculate the value of K_c for the equilibrium at 120 °C.

[1]

(c) Suggest and explain why it would be more difficult to determine K_c for this equilibrium at room temperature.
 [2]
 (d) (i) Explain how enthalpy changes, ΔH values, for covalent bonded molecules can be calculated from bond energies.

$$2\mathsf{HI}(\mathsf{g}) \to \mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g})$$

			[3]
(e)	HI	dissolved in water behaves as a strong acid.	
	(i)	Explain what is meant by a strong acid.	
	(ii)	Complete the equation.	
		$HI + H_2O \rightarrow \dots + \dots$	
	(iii)	Identify the conjugate base of HI in this equation.	
			.[3]
		[Total : 1	10]

The table below gives data on some oxides of elements in Period 3 of the Periodic Ta 2

			4			my.	A.D.
ole below gives da	ıta on son	ne oxides	-	nts in Per	riod 3 of th	e Periodic	Ta WaCann
							· · · · · · · · · · · · · · · · · · ·
oxide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO ₃	Tig
oxide melting point/K	Na ₂ O 1193	MgO 3125	A <i>l</i> ₂ O ₃ 2345	SiO ₂	P ₄ O ₁₀	SO ₃	A. Patra Cambridg

(a)	Write an equation for the reaction of aluminium with oxygen to form aluminium oxide.
	[1]

(b) Drawing diagrams where appropriate, suggest in terms of structure and bonding,

(i) the high melting point and boiling point of ${\rm A}\it{l}_{2}{\rm O}_{3}$

(ii) the low boiling point of SO₃

explanations for the following.

(iii) the melting point of ${\rm SiO_2}$ is much higher than that of ${\rm P_4O_{10}}$

www.PapaCambridge.com **(c)** Water was added to each of the oxides in the table. Choosing a suitable oxide in each case, write an equation for the formation of (i) an alkaline solution, an acidic solution.[2] (ii) [Total : 10]

(11)	write equations for the reactions at each electrode, giving state symbols.
	anode
	cathode
(iii)	Explain in terms of changes in oxidation number why redox processes take place at the electrodes.
	anode
	cathode
(iv)	Name the chemical which is produced in solution by this electrolysis.
(v)	Suggest two large scale uses of this chemical.
	[10]

		The state of the s
		7
(b)	•	drochloric acid is manufactured by burning the hydrogen formed in this electronine and dissolving the product in water. Construct an equation for the burning of hydrogen in chlorine.
	(i)	Construct an equation for the burning of hydrogen in chlorine.
	(ii)	When the product of (i) dissolves in water there is a change in bonding. Explain with the aid of an equation what change in bonding has occurred.
		[2]
(c)	Des	scribe, with the aid of equations including state symbols, what happens when
	(i)	hydrochloric acid is added to aqueous silver nitrate,
	(ii)	an excess of aqueous ammonia is added to the resulting mixture.
		[5]
		[Total : 17]

citronellol

geraniol

- (a) Confirm that citronellol and geraniol are isomers by calculating their molecular formula and their relative molecular mass, M_r .
 - (i) Molecular formula
- (b) Name two functional groups present in both molecules.
 - (i)
 - (ii)[3]

Citronellol and geraniol also show stereo isomerism.

(c) On the diagram of the structure of citronellol above, draw a circle around a chiral carbon atom. [1]

www.PanaCambridge.com (d) (i) Draw the other cis-trans isomer of geraniol. [In parts (d) and (f) use represent a part of the molecule.]

	(ii)	Explain why geraniol has no optical isomers.
		[2]
(e)	Sta	te what you would expect to see if citronellol was reacted with aqueous bromine.
		[1]
(f)	Dra	w structures of the organic products when geraniol reacts with each of the following

(i) an excess of $H^+/Cr_2O_7^{2-}$ under reflux

reagents.

(ii) ethanoic acid in the presence of an acidic catalyst

(iii) hydrogen bromide, HBr

	The state of the s			
	10 A. D.	-		
2-Hydro synthes	xypropanoic acid (lactic acid), CH ₃ CH(OH)CO ₂ H, can be prepared in a two is from ethanal, CH ₃ CHO. the first stage, ethanal reacts with hydrogen cyanide, HCN, in the presence of a CN catalyst to produce a cyanohydrin. Write an equation for the reaction of ethanal and HCN, giving the displayed formula.	an		
	(a) In the first stage, ethanal reacts with hydrogen cyanide, HCN, in the presence of NaCN catalyst to produce a cyanohydrin.			
(i)	Write an equation for the reaction of ethanal and HCN, giving the displayed formu of the product.	la		
(ii)	State what type of reaction this is.			
(iii)	Describe the mechanism of this reaction.			
45.1.4		[5]		
(b) In t	he second stage, the product from (a) is converted into lactic acid.			
(i)	Write the equation for this stage.			
(ii)	State what type of reaction this is.			

www.PapaCambridge.com (c) In this synthesis 4.40 g of ethanal were used and at the end 5.40 g of lactic act. obtained.

Calculate the percentage yield of lactic acid.

[3]

[Total : 10]

12

BLANK PAGE

www.PapaCambridge.com